Large Deviations and Quasi-stationarity for Density-dependent Birth-death Processes

نویسنده

  • TERENCE CHAN
چکیده

Consider a density-dependent birth-death process X N on a finite state space of size N . Let PN be the law (on D.[0; T ]/ where T > 0 is arbitrary) of the density process XN =N and let 5N be the unique stationary distribution (on [0,1]) of X N =N , if it exists. Typically, these distributions converge weakly to a degenerate distribution as N ! 1, so the probability of sets not containing the degenerate point will tend to 0; large deviations is concerned with obtaining the exponential decay rate of these probabilities. Friedlin-Wentzel theory is used to establish the large deviations behaviour (as N !1) of PN . In the one-dimensional case, a large deviations principle for the stationary distribution 5N is obtained by elementary explicit computations. However, when the birth-death process has an absorbing state at 0 (so 5N no longer exists), the same elementary computations are still applicable to the quasi-stationary distribution, and we show that the quasi-stationary distributions obey the same large deviations principle as in the recurrent case. In addition, we address some questions related to the estimated time to absorption and obtain a large deviations principle for the invariant distribution in higher dimensions by studying a quasi-potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birth-death Processes with Killing: Orthogonal Polynomials and Quasi-stationary Distributions

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to in...

متن کامل

Quasi-stationary distributions for population processes

Key-words: population dynamics, quasi-stationarity, Yaglom’s limit, birth and death process, logistic Feller diffusion.

متن کامل

Quasi-stationary distributions and population processes

This survey concerns the study of quasi-stationary distributions with a specific focus on models derived from ecology and population dynamics. We are concerned with the long time behavior of different stochastic population size processes when 0 is an absorbing point almost surely attained by the process. The hitting time of this point, namely the extinction time, can be large compared to the ph...

متن کامل

Quasi-stationary Distributions for Birth-death Processes with Killing

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to in...

متن کامل

Quasi-stationarity distributions and diffusion models in population dynamics

In this paper, we study quasi-stationarity for a large class of Kolmogorov diffusions, that is, existence of a quasi-stationary distribution, conditional convergence to such a distribution, construction of a Q-process (process conditioned to be never extinct). The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998